Exercice 1

Usines, bureaux, commerces, hôtels, etc. : les établissements constituent le tissu productif d'un territoire. En France, entre les 1^{er} janvier 2008 et 2013, le nombre d'établissements est passé de 3,5 millions à 4,2 millions dans les activités marchandes hors agriculture.

Cette croissance s'accompagne d'un important renouvellement des établissements sous forme d'entrées et de sorties du tissu productif.

MODÉLISATION

On estime que chaque année, sur la période entre les 1er janvier 2008 et 2013 :

- le taux de sortie annuel moyen des établissements par le biais de cessations d'activités et transferts géographiques (déménagements) est de 17,5 %;
- le nombre d'entrées annuel par le biais de créations d'entreprises, de reprises ou de transferts (emménagements) est de 812 000 établissements.

L'évolution nombre d'établissements est modélisée par la suite (u_n) où le terme u_n est le nombre, en millions, d'établissements le 1^{er} janvier de l'année (2008 + n). Ainsi, $u_0 = 3,5$.

- 1. Justifier que pour tout entier naturel n, $u_{n+1} = 0.825 \times u_n + 0.812$.
- 2. On considère la suite (v_n) définie pour tout entier naturel n par $v_n = u_n 4.64$.
 - a) Démontrer que la suite (v_n) est une suite géométrique dont on précisera le premier terme et la raison.
 - b) Exprimer v_n en fonction de n. En déduire que pour tout entier naturel n, $u_n = 4.64 1.14 \times 0.825^n$.
- 3. Ce modèle permet-il d'obtenir une estimation fiable (approchée à moins de 0,01 million près) du nombre d'établissements en France, au 1^{er} janvier 2013?
- 4. En admettant que ce modèle reste valable pour les années suivantes :
 - a) Est-il possible d'envisager qu'en France, le nombre d'établissements atteigne 5 millions ?
 - b) On souhaite écrire un algorithme qui permette d'afficher l'année à partir de laquelle le nombre d'établissements sera supérieur à 4,5 millions.
 - Parmi les trois algorithmes suivants, déterminer celui qui convient pour répondre au problème posé et expliquer pourquoi les deux autres ne conviennent pas.

Algorithme 1

Affecter à n la valeur 0

Affecter à U la valeur 3,5

Tant que $U \leq 4.5$

Affecter à U la valeur $4,64-1,14\times0,825^n$

Affecter à n la valeur n+1

Fin Tant que

Affecter à n la valeur n + 2008

Afficher n

Algorithme 2

Affecter à n la valeur 0

Affecter à *U* la valeur 3,5

Tant que $U \leq 4.5$

Affecter à U la valeur $0.825 \times U + 0.812$

Affecter à n la valeur n+1

Fin Tant que

Affecter à n la valeur n + 2008

Afficher n

Algorithme 3

Affecter à n la valeur 0

Affecter à U la valeur 3,5

Tant que U > 4,5

Affecter à U la valeur $0.825 \times U + 0.812$

Affecter à n la valeur n+1

Fin Tant que

Affecter à n la valeur n + 2008

Afficher n

Exercice 2

Soit f la fonction définie sur $\mathbb{R}\setminus\{3\}$ par :

$$f(x) = \frac{x^2 - 5x + 7}{x - 3}$$

On appelle f' sa fonction dérivée et $\mathscr C$ sa représentation graphique.

- 1. Résoudre l'équation f(x) = 0.
- 2. (a) Montrer que, pour tout $x \neq 3$, $f'(x) = \frac{x^2 6x + 8}{(x 3)^2}$.
 - (b) Étudier le signe de f'(x) selon les valeurs de x et établir le tableau des variations de f en indiquant les extremums locaux.
- 3. (a) Déterminer, s'il y en a, les abscisses des points de $\mathscr C$ où la tangente est parallèle à l'axe des abscisses.
 - (b) Soit \mathcal{T} la tangente à \mathcal{C} au point d'abscisse 0. Déterminer une équation de \mathcal{T} .