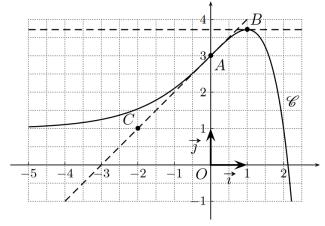
Exercice 1

On donne ci-dessous la courbe représentative $\mathscr C$ d'une fonction f définie et dérivable sur $\mathbb R$. On admet que :

- (AC) est la tangente à \mathscr{C} en A(0;3);
- \mathscr{C} admet une tangente horizontale en B(1;?).



- 1. Lire sur le graphique les valeurs respectives de f(0), f'(0) et f'(1) où f' désigne la dérivée de f.
- **2.** On admet que f est définie par $f(x) = (ax + b)e^x + c$.
 - a) Établir que : $\forall x \in \mathbb{R}$ $f'(x) = (ax + a + b)e^x$
 - b) Justifier que les réels a, b et c vérifient les égalités b+c=3, a+b=1 et 2a+b=0.
 - c) Déterminer les valeurs respectives de a, b et c.

Exercice 2

Résoudre dans \mathbb{R} l'équation $e^{x-1}(e^x - 1) = 0$.

Exercice 3

En justifiant votre réponse, dire si chacune des affirmations suivantes est vraie ou fausse :

- 1. Pour tout réel x, $e^{2x} 2e^x + 1 \ge 0$;
- 2. Pour tout réel $x \in [0; +\infty[$, $e^{2x} 1 \ge 0;$
- 3. Pour tout réel x, $e^{x} + e^{-x} + 1 > 0$;
- 4. Pour tout réel x, $(-x^2 + x 3)e^{-x} < 0$.

Exercice 4 Difficile

Dans cet exercice, les questions sont indépendantes.

- 1. Résoudre l'équation $e^{2x} (1+e)e^x + e = 0$.
- **2.** Résoudre l'inéquation $\frac{1-e^{2x}}{2+e^x} \geqslant 0$.

3. Résoudre l'équation $e^{3x+2} + \frac{e}{e^{3x+2}} = e + 1$.

4. Vérifier que :
$$\forall x \in \mathbb{R} -1 < \frac{e^{2x} - 1}{e^{2x} + 1} < 1$$

Exercice 5 Difficile

Soit $(u_n)_{n\geqslant 1}$ la suite de terme général $u_n=\left(1+\frac{1}{n}\right)^n$.

1. Montrer que : $\forall x \in \mathbb{R} \quad e^x \geqslant 1 + x$

2. En déduire que : $\forall n \in \mathbb{N}^* \quad \left(1 + \frac{1}{n}\right)^n \leqslant e$

3. En posant t=-x, établir que : $\forall t<1$ $e^t\leqslant \frac{1}{1-t}$ **4.** En déduire que : $\forall n\in\mathbb{N}^*$ $e\leqslant \left(1+\frac{1}{n}\right)^{n+1}$

5. Prouver que : $\forall n \in \mathbb{N}^* \quad 0 \leqslant e - u_n \leqslant \frac{3}{n}$

6. Justifier que la suite $(u_n)_{n\geqslant 1}$ est convergente et préciser sa limite.

→ Question hors programme