Exercice 1

Pour chacune des propositions suivantes, indiquer si elle est vraie ou fausse et justifier la réponse choisie.

- **PROPOSITION 1**: Si a est un réel tel que $-2 \le a \le 4$ alors $4 \le a^2 \le 16$.
- **PROPOSITION 2:** Si f est une fonction affine telle que f(2) = -1 et f(-1) = 4 alors f est croissante sur \mathbb{R} .
- **PROPOSITION 3:** Si f est une fonction affine telle que f(-1) = 3 et f(2) = 5 alors f(5) = 7.
- **PROPOSITION 4 :** Soient A et B deux points distincts du plan. Si $\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{AB}$ alors M est le milieu du segment [AB].
- PROPOSITION 5 : Le point I de coordonnées (-1,3) est le milieu du segment [AB] où les coordonnées des points A et B sont respectivement (2; -3) et (-4;9).

Exercice 2

Soit ABCD un quadrilatère quelconque et M et N les points définis par $\overrightarrow{BM} = \frac{1}{2}\overrightarrow{AB}$ et $\overrightarrow{AN} = 3\overrightarrow{AD}$.

- 1. Démontrer que $\overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{CB} + \overrightarrow{AD}$
- 2. Établir les relations suivantes :

a)
$$\overrightarrow{CM} = \frac{1}{2}\overrightarrow{AB} - \overrightarrow{BC}$$
.

b)
$$\overrightarrow{CN} = 2\overrightarrow{AD} - \overrightarrow{DC}$$

En déduire que si ABCD est un parallélogramme alors les points C, M et N sont alignés.

Exercice 3

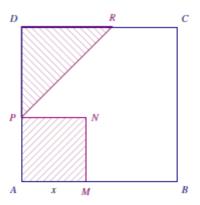
Soit $(O; \vec{i}, \vec{j})$ un repère orthonormé du plan.

- 1. On considère la droite \mathcal{D} passant par le point E(4;-2) et admettant pour coefficient directeur (-2)
 - a) Déterminer une équation de la droite D.
 - b) Le point F(2;-1) est-il un point de la droite \mathcal{D} ?
- On considère les points A (−4;9) et B (2;12)
 - a) Déterminer une équation de la droite (AB).
 - b) Les droites (AB) et D sont elles parallèles ?
- 3. Résoudre le système S: $\begin{cases} y = -2x + 6 \\ y = 0,5x + 11 \end{cases}$. Interpréter graphiquement le résultat.
- On admettra maintenant que les droites (AB) et Ø sont sécantes en H (−2: 10).
 Démontrer que le triangle BHE est rectangle en H.

Exercice 4

PARTIE A

ABCD est un carré de côté 12 cm. M étant un point du segment [AB], on construit le carré AMNP et le triangle rectangle isocèle PRD comme indiqué sur la figure ci-dessous.

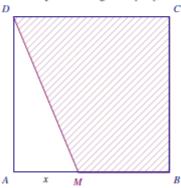


On pose x = AM avec $x \in [0; 12]$

- 1. Exprimer en fonction de x l'aire du triangle PRD.
- 2. On note f(x) l'aire en cm² de la partie hachurée.
 - a) Montrer que pour tout réel x appartenant à l'intervalle [0; 12], $f(x) = \frac{3}{2}x^2 12x + 72$.
 - b) Donner, en justifiant, le tableau de variation de la fonction f. En déduire la valeur minimale de l'aire de la partie hachurée.
- Déterminer les positions éventuelles du point M pour que l'aire de la partie hachurée soit égale à la moitié de l'aire du carré ABCD.

PARTIE E

ABCD est un carré de côté 12 cm. M étant un point du segment [AB], on construit le trapèze DMBC.



On pose x = AM avec $x \in [0; 12]$

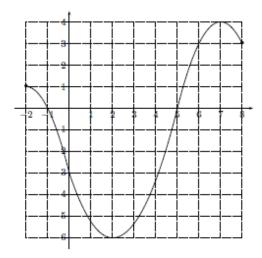
- On note g(x) l'aire en cm² du trapèze DMBC.
 Montrer que pour tout réel x appartenant à l'intervalle [0; 12], g(x) = 144 6x.
- 2. On donne en annexe la représentation graphique de la fonction f définie dans la partie A.
 - a) Tracer sur la figure donnée la représentation graphique de la fonction g.
 - b) Démontrer que, pour tout $x \in [0;12]$, $f(x) g(x) = \frac{3}{2} \times \left[(x-2)^2 52 \right]$.
 - c) Résoudre l'inéquation $f(x) \le g(x)$.

Exercice 5

Pour chaque question, il est demandé de compléter le tableau en indiquant la lettre correspondant à l'unique réponse exacte parmi les quatre proposées.

Numéro de la question	1	2	3	4	5	6	7	8	9	10
Lettre correspondant										
à la réponse exacte										

 On donne ci-dessous la courbe représentative d'une fonction f définie sur [-2; 8].

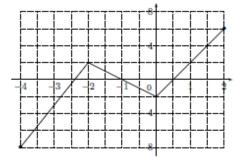


- a. 0 est l'unique antécédent de (-3) par f;
- **b.** l'ensemble des solutions de l'inéquation f(x)>0 est $[-2;-1[\cup]5;8]$;
- c. f atteint son minimum lorsque x = -6;
- **d.** l'ensemble solution de $f(x) \leq 0$ est]-1;5[.
- Soit g la fonction dont on donne le tableau de variations ci-dessous.

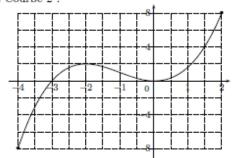
\boldsymbol{x}	-4	-2	0	2
Var.	-8-	_2_	→ -2 -	8

Parmi les courbes suivantes, quelle est celle qui peut correspondre à la courbe représentative de g ?

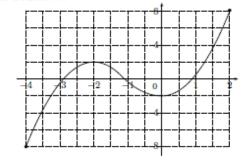
a. Courbe 1:



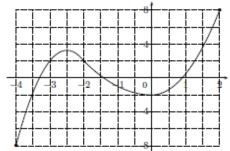
b. Courbe 2:



c. Courbe 3:



d. Courbe 4:



 Soit h la fonction dont on donne le tableau de variations ci-dessous.

\boldsymbol{x}	0	2	5	7
Var.	3	~ ₋₁ /	8_	<u>~</u> 2

On peut affirmer que l'équation h(x) = 0:

- a. admet exactement une solution;
- admet exactement deux solutions;
- c. admet exactement trois solutions;
- d. n'admet pas de solution.

- La fonction f vérifie f(1)=4 et f(−2)>f(0). Parmi les tableaux de variations suivants, quel est celui qui peut être celui de f?
 - a. Tableau 1 :

\boldsymbol{x}	-5	-3	0,5	1
Var.	-2-	→ ⁰ <u></u>		4

b. Tableau 2:

\boldsymbol{x}	-5	-2	0	1	4
Var.	-2	√ 0 ~	- ₁	_3~	→ 1

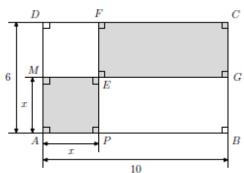
c. Tableau 3:

\boldsymbol{x}	-5 1	4
Var.	4	3

d. Tableau 4:

\boldsymbol{x}	-5	-2	1	4
Var.	-2-	0_		_1

5. Sur la figure ci-dessous, l'unité de longueur est le centimètre.



L'aire de la surface grisée est donnée, en cm², par :

a.
$$6 \times 10 - 2x^2$$
;

b.
$$(10-x)(6-x)$$
;

c.
$$2x^2 - 16x + 60$$
;

d.
$$x^2 + (6-x)^2$$
.

6. On considère l'algorithme suivant :

Variables	a, b, c et d réels
Entrée	Saisir a
Traitement	b prend la valeur $a+2$
	c prend la valeur b^2
	d prend la valeur $c-9$
Sortie	Afficher d

En affectant la valeur (-3) à la variable a, le résultat obtenu est:

$$a. -10;$$

d. aucun des trois résultats précédents.

7. On considère l'algorithme suivant :

Variables	a et b réels
Entrée	Saisir a
Traitement	Si a est un entier impair
	Alors
	b prend la valeur $4 \times a$
	Sinon
	b prend la valeur $8 + a \div 2$
	Fin si
Sortie	Afficher b

En affectant la valeur 4 à la variable a, le résultat obtenu est:

d. aucun des trois résultats précédents.

8. Des égalités ci-dessous laquelle est vraie pour tous réels strictement positifs a et b?

$$\begin{aligned} \mathbf{a.} \ & (a+b)^2 = a^2 + b^2 \,; & \quad \mathbf{b.} \ & \frac{a^2 - b^2}{a+b} = a - b \,; \\ \mathbf{c.} \ & \frac{3a+b}{3} = a+b \,; & \quad \mathbf{d.} \ & \sqrt{a} + \sqrt{b} = \sqrt{a+b}. \end{aligned}$$

b.
$$\frac{a^2 - b^2}{a + b} = a - b$$

c.
$$\frac{3a+b}{3} = a+b$$
;

d.
$$\sqrt{a} + \sqrt{b} = \sqrt{a+b}$$

9. Sous forme factorisée $16 - (2x - 1)^2$ s'écrit :

a.
$$-4x^2 + 4x + 15$$
;

b.
$$-4x^2 - 4x + 17$$
;

$$c_{-3x+3}(2x+3)$$
:

c.
$$(-2x+3)(2x+3)$$
; d. $(-2x+5)(2x+3)$.

10. L'équation (x-1)(x-2) = 2 admet pour ensemble des solutions :